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Unsteady viscous flow in a pipe of slowly varying 
cross-section 

By P. HALL 
Mathematics Department, Imperial College, London 

(Received 20 July 1973 and in revised form 4 January 1974) 

The steady streaming generated in a pipe of slowly varying cross-section when 
a purely oscillatory pressure difference is maintained between its ends is con- 
sidered. It is assumed that the perturbation of the pipe wall in the T ,  0 plane is 
small compared with the characteristic thickness of the Stokes layer associated 
with the oscillatory motion of the fluid. The first-order steady streaming is 
evaluated for the cases when this characteristic thickness is large and small 
compared with a typical radius of the pipe. I n  both these limits it is found that 
the geometry of the pipe is crucial in determining the nature of the induced 
steady streaming. If the ends of the pipe have the same mean radius i t  is found 
that the steady streaming consists of regions of recirculation between the nodes 
of the pipe. Otherwise the steady streaming is of a larger order of magnitude and 
has a component which represents a net flow towards the wider end of the pipe. 

1. Introduction 
When a purely oscillatory viscous flow is set up over a curved surface the 

Reynolds stresses associated with the oscillatory motion of the fluid in the 
Stokes layer a t  the surface generate a steady component of velocity which 
persists away from the layer because of the action of viscosity. Several authors 
have discussed this type of flow adjacent to a circular cylinder (see for example 
Schlichting 1932; Riley 1965; Stuart 1966). Similar mathematical and physical 
ideas arise in the study of water waves (see Longuet-Higgins 1953). More recently 
Lyne (1971 b )  has used the method of conformal transformation to  investigate 
the steady streaming induced by an oscillatory viscous flow adjacent to  a wavy 
wall. 

We shall use what is often called ‘lubrication theory’ to obtain the first-order 
steady streaming generated by a purely oscillatory pressure difference main- 
tained between the ends of a pipe of slowly varying cross-section. Essentially 
the method requires that as well as the pipe cross-section varying slowly a modi- 
fied Reynolds number associated with the flow be small. Manton (1971) has 
considered the corresponding steady problem by a similar method. Ramachandra 
Rao & Devanathan ( 1  973) have recently considered pulsatile flow in pipes of 
slowly varying cross-section. We postpone a, discussion of their work until the 
end of this section. 
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Suppose that the pipe is defined in cylindrical polar co-ordinates ( r ,  8, z )  by 

0 < r < D,{R(z/L) + cS(z/L) cos M S ] ,  0 < z 6 KL, (l . la,  b )  

where M clearly must be an  integer, which we assume to be positive. This corre- 
sponds to  a pipe which, for a given value of z ,  has its maximum radius a t  the 
points where cos lll8 = 1 and minimum radius a t  the points where cos n/!e = - 1 
if S(z/L) is positive and vice versa if i t  is negative. We consider only pipes which 
are slightly non-axisymmetric in the sense that c is assumed small in the follow- 
ing work. It is clear that  pipes of more general shape can, as long as they are only 
slightly non-axisymmetric, be treated by Fourier analysing the 8 dependence 
of the pipe radius. It is of interest to  notice that the case M = 2 corresponds to 
a pipe with an elliptical cross-section of small eccentricity. The major and 
minor axes a t  any value of z are given by the lines 8 = 0, $77 respectively if S(z/L) 
is positive and vice versa if it  is negative. 

We define a parameter 6 representing the order of magnitude of the rate of 
change of the pipe radius by 

6 = DE/L2, (1.2) 

where Do and L are characteristic lengths in the r and z directions respectively. 
We assume throughout that  

6 9  1. (1.3) 

If (c) is the frequency of t,he applied pressure difference and v is the kinematic 
viscosity we define a frequency parameter u by 

u = oD$/v. (1.4) 

Thus a-4 represents the ratio of the characteristic thickness of the Stokes 
layer formed by the oscillatory motionof the fluid to  the typical radius of 
the pipe. We assume that E is such that 

€a4 < 1 (1.5) 

so that the perturbation of the pipe wall in the r ,  0 plane is small compared with 
the characteristic thickness of the Stokes layer. 

If U,is a typical axial velocity, brought about by the driving pressure difference, 
t,hen we define a modified Reynolds number R, by 

R M  = UoDE/Lv. (1.6) 

R, is taken to be small throughout this work. It is clear that U,, will be propor- 
tional t,o the amplitude ofthe applied pressure difference. The procedure adopted 
below is as follows. 

I n  $ 2  we formulate the non-dimensional equations governing the flow and 
determine the so-called ‘Stokes flow’ by putting the parameters RM and 6 
equal to zero. The steady streaming first appears in t,he order-R, correction 
to  the Stokes flow and this is evaluated in the high and low frequency limits in 
$33 and 4 respectively. I n  $ 5  we give a brief discussion of the results obtained 



Unsteady $ow in a pipe of varying cross-section 211 

in the previous two sections and the relevance of these results to some physio- 
logical flows. 

Having given a brief description of the work presented in this paper we now 
discuss the work of Ramachandra Rao & Devanathan (1973). These authors 
considered pulsatile flow in pipes of slowly varying radius. They assumed that 
the ratio k of the orders of magnitude of typical oscillatory and steady axial 
velocities was small. They then obtained a solution by expanding the stream 
function in powers of k and parameters corresponding to R, and 6. (The para- 
meters corresponding to R, and S are in fact R,e and e2 in their notation.) The 
terms in the expansion evaluated by them were those of order 1, R,, k and R,k. 
The first two of these terms are clearly steady and are identical to those evaluated 
by Manton (1971) and Hall (1973). The order-k term in the expansion of Rama- 
chandra Rao & Devanathan is oscillatory and can be shown to be the order-one 
term of our expansion. The remaining term evaluated by them is another oscil- 
latory term and is produced by the nonlinear interaction of the order-R, and 
order-l terms. The steady streaming terms would first appear at order R, k2 in 
their expansion and, as stated earlier, were not evaluated by them. It should be 
said that the condition that k be small is not required in order to solve their 
problem. It can be shown that the work presented in this paper can be easily 
combined with the work on the steady problem given in the author’s thesis 
(Hall 1973) to  obtain a solution to the pulsatile flow problem. 

2. Equations of motion and the Stokes flow 
We consider viscous incompressible flow in a pipe defined in cylindrical polar 

co-ordinates by (1 .1) .  We define p ,  v, p and t to be the pressure, kinematic vis- 
cosity, density and time respectively. We assume that the pressure difference 
between the ends is given by 

p(R(K)+eS(K)cos M8,8,KL,t)-p(R(O)+eS(O)cosM8,8,0,t) = C,sinwt. (2.1) 

We shall in fact see that to the order in R, and S to which we work p is indepen- 
dent of r and so i t  is not necessary to specify the pressure in (2.1) evaluated a t  the 
pipe wall. However a t  higher order this is not the case and p is a function of r ,  
thus requiring the boundary condition to be specified a t  the pipe wall. We 
define dimensionless variables r ,  7 and 5 by 

r = wt, q = r/Do, < = z/L. (2.2a, b,  c) 

If (u, v, w) is the velocity vector corresponding to ( r ,  8, x) we define a dimension- 

(2.3) 
less velocity by 

where U, is again a typical velocity along the pipe. We define a dimensionless 

p+ = pD;/pVLu,. (2-4) 
pressure p+ by 

The momentum and continuity equations can then be written in the form 

(9 ,  h , f )  = ( W U o )  (u, v, J&w), 

14-2 
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(2.5 b )  

( 2 . 5 c )  

( 3 . 5 4  

where v2 = ayav2 + 7-1apl+ 11-2a2/ae2 

and 6, u and R,, are as defined by ( 1 . 2 ) ,  (1.4) and (1.6) respectively. These equa- 
t,ions must be solved subject to there being no relative velocity at the pipe n d l .  
Thus we require that 

g = h = f = 0 a t  7 = R(<)+eS(<)cosM8, (S.Ga, b, c )  

and from (2.1) i t  follows that 

p+(R+eScosiMB, 8, K ,  T )  -p+(R +cScos 11I8,0,0, T )  = asin 7, (2.7) 

where a is defined by 
a = Co DilpvLL',. (2.8) 

The remaining conditions required to specify the problem completely are kine- 
matical in origin. We require that, a t  7 = 0, p+ and f must be independent of 8, 
whilst g and h must vary like cos 8 and sin 8 there. A helpful reference where 
these conditions are discussed in more detail is Batchelor & Gill (1962). 

We seek a solution of the system just specified by expanding g, f, h and pf 
in the form 

g = G o o + e G O l + R J ~ G 1 0 + ~ R J 1 G 1 1 + O ( 6 R ~ ~ 1 1 , e 2 ) ,  etc. (2.9) 

The Stokes flow is then obtained by putting the parameters R, and 6 equal to 
zero everywhere. We now solve for this flow up to  and including terms of order c. 
We first write 

(2.10) 

where a tilde denotes a complex conjugate and the functions loo. g,, hoo and 
poo are all independent of 7. If we substitute for Goo, etc., from (2.10) into (2.9) 
and then substitute the resulting expressions into (2.5) and equat'e terms of 
order unity which are proportional to eir we obtain 

apoop7 = apoope = 0, 

Goo = &(gooeir +gooe-ir) ,  etc., 

(2.11a, b )  

(2.11c) aPoolaC = F2 - i 4 f o o 9  

( 2 . 1 1 4  

Thus we see that poo is independent of r and 8, and we can use (2.11 c )  to  show 
that if solutions of Bessel's equation which are singular at 7 = 0 are rejected 
then foo is given by 

(2.12) f o o  = -p;o/ig + ~ ~ O , J 0 ( ~ 7 ) ,  
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where we have rejected all O-dependent solutions. The vanishing of these terms 
would otherwise be obtained by applying the boundary conditions. From now 
on a prime (except on a Bessel function) denotes a derivative with respect to <, 
and s is defined by s = (-ia)h. (2.13) 

The coefficient A,, appearing in (2.12) is a function of 6 and will be determined 
later. If we now substitute for foo from (2.12) into (2.11 d ) we can shorn that 

(2 .14)  

In order to  solve for go, and h,, we need another equation linking these quantities. 
This is found by eliminating the pressure from (2.5a, b )  and then equating 
terms of order 6 after substituting for g, h and f from (2.9).  If we then again 
define Go, and H,, as in (2.10) we obtain 

l 
. i a  {V, - zcr} - - (yh,,) - - - = 0, [, 37 7 a0 

ag,, (2.15) a 
which we solve to get - (yhoo) -% = B,,yJo(sq), 

where we have again rejected any O-dependent solutions. The vanishing of 
these solutions would otherwise be obtained on applying the boundary condi- 
tions later. The coefficient B,, is a function of 5 and will be determined later. 
The solutions of Bessel's equation which lead to terms in go, and h,, singular at  
7 = 0 have been rejected. We can eliminate go, from (2.14) and (2.15) to get an 
equation for h,, whose solution which is regular a t  71 = 0 is 

h,, = (icr)-lB,,dJo(sy)/dy. (2.16) 

We can now substitute for h,, from (2.16) into (2.14) and after multiplying by 
y we can integrate from 0 to y to get 

goo = [P,",? - ~ A 3 J o ( s 7 ) / d r l / 2 i ~ ,  (2.17) 

where we have used the fact that go, is regular a t  7 = 0 to show that qgoo is zero 
there. We can repeat the above calculations to show that the order-c terms in 
the Stokes flow are given by 

37 

+{cM,sin MB-c, ,co~M8}y~-~+p; l ,y /~ icr ,  (2.18a) 

+{cLw1 cosM6+cM2sin M 6 } 7 " - 1 + 5 d . l , ,  z c ~  dy (2.180) 

fol = -phl/ia + {ar7.,, cos M6 + a,lf2 sin H O }  Jnl(s7), ( 2 . 1 8 ~ )  
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where a,,,, etc., are functions of 5 to be determined later and go,, etc., are defined 
by 

(2.19) 

For convenience we have rejected any &dependent solutions other than those 
proportional to cos M e  or sin MO. The vanishing of these solutions would other- 
wise be obtained on applying the boundary conditions. In  order to  solve for 
the unknown functions of [in foo, etc., we must consider the boundary conditions 
on the velocity and the pressure. From (2.6), (2.7),  (2.9), (2.10) and (2.19) it 
follows that t.hese may be written in the form 

Go, = ~{golei7 +gO1e-zrj, etc. 

~oo+ego ,  = hoo+~hol  =foO+t.fol = O(e2) a t  q = R+eS cosiII8, (2.20a, b, c) 
( 2 . 2 0 4  e )  Poo(K) - POO(0) = - ia, POl(K) - PO,(O) = 0. 

We can use (2.12) and ( 2 . 1 8 ~ )  to show that the condition ( 2 . 2 0 ~ )  gives 

x (4,JsR) + ~ s S c o s  ( M e )  &(sR)} + Ao,{Jo(sR) + e.sSJA(sR)}, 

where from now on a prime on a Bessel function denotes the derivative with 
respect to  its argument, and we have replaced JM(sR+ esS cos M e )  by its Taylor 
series expansion about sR. The validity of this expansion is ensured by (1.5). 
The coefficients AOL, a,,fl etc., are then found by equating terms proportional to 
1,  E cos MO, etc. If we then substit,ute the values of the coefficients obtained by 
this process into (2.12) and (2.18 c), we can write foo and fol in the form 

(2.21a) 

(2.21b) 
sSpAo Ji(sR) J,, (sq)  cos M6 

J,,(sR) 

We can similarly substitute the expressions (2.16),  (2.17) and (2.18a, b )  into 
(2.20a, b )  and expand in powers of E .  If we then equate terms independent of 
E and 8 in ( 2 . 2 0 ~ )  we obtain 

(2.22) 

which is the Reynolds equation for the pressure and can be integrated to give 

- '' = {&R2- RJ,(sR)/sJo(sR))' (2.23) 

The constant E is obtained by integrating both sides of (2.23) from 5 = 0 to 
5 = K and using (2 .2Od) .  We thus obtain 

(2.24) 

If  we equate terms proportional to E and independent of 8 in ( 2 . 2 0 ~ )  we obtain 
the Reynolds equation for po l .  If this equation is solved subject to ( 2 . 2 0 e )  we 
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find that p& = 0. If we equate terms of order unity and independent of 0 in 
(2 .20b)  we find that Bo, = 0. Similarly we find by equating terms independent 
of 8 of order .s in ( 2 . 2 0 b )  that bo, = 0. The coefficients bLzrl, etc., are found by 
equating terms proportional to F cos NO and esinM8 in (2.20a, b ) .  We can then 
show that 

( 2 . 2 5 ~ )  

( 2 . 2 5  b )  
(2.25 c )  

where ( 2 . 2 6 ~ )  

( 2 . 2 6 b ,  c )  

(For more details of the determination of the above expressions see Hall 1973.) 

3. Calculation of the steady streaming for large g 
When CT is large the thickness of the Stokes layer associated with the oscil- 

latory motion of the fluid is very small compared with a typical value of the 
pipe radius. We first discuss the nature of the Stokes flow for large a. If we use 
the asymptotic expansion for Bessel functions of large argument in (2.23) and 
(2.24) we can show that 

where 

(3.1) 

(3.2a) b )  

and we now choose a such that a = p;’. This is equivalent to redefining the 
typical axial velocity Uo in terms of the amplitude of the applied pressure 
difference. We can then write (3.1) in the form 

If we define a Stokes-layer variable y’ by 

then by expanding the Bessel functions in (2.21) and ( 2 . 2 5 )  for large [syl and 
lsRl and using (3.3) we can show that in the Stokes layer 

y’ = (R-y) (&a)*, (3.4) 

too - ( V R ~ ) - ~ { I  - exp ( -  ( I  +i )  7’) + O(u-*)}, (3.5a) 
( 3 . 5 b )  goo - (R’/rR2) { l  - exp ( - ( 1  + i) 3’) + O(a-*)}, 
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fol - [Sexp ( - ( 1  + i) f ) / (  - icr)lR2 + O(cr-l)] cos M O ,  (3.5c) 

(3 .5d)  

h,, ‘v O(a-1). (3.5e) 

go, N [SR’ exp ( - ( 1  + i) ?‘)I( - icr)*R2 + O ( r 1 ) 3  cos N O ,  

If  we put S = R’ = 0 in (3.5) we see that the flow in the Stokes layer reduces to 
the Stokes shear-wave solution for flow in a circular pipe. We can also see from 
(3.5) that the order-s corrections t.0 t,he axisymmetric flow have a dominant 
term which decays to  zero at the edge of the Stokes layer. We shall refer to the 
region auay from the Stokes layer as the ‘outer‘ layer. 

If we substitute for g,h,  f and p+ from (2.9) into (2.5) and equate terms of 
order R, we obtain (3.6a, b )  ap1,/a7 = ap,,/ae = 0, 

(3.7b) 

We recall that, in $ 2 ,  F,, and Go, represented the axisymmetric solution and 
Fol, Go, and H,, gave the order-e non-axisymmetric correction to  this solution. 
Similarly F,, and GI, will represent the order-R, axisymmetric solution and 
Fll, G,, and H,, will give the order-sR, non-axisymmetric correction to this 
solution. Thus we drop the 0 dependence in (3.7) and put HI,  = 0. The relevant 
boundary conditions for F,, and Glo are 

F,, = G,, = 0 a t  7 = R, ( 3 . 8 ~ )  b)  
and from (2.7) and (2.9) if follows that 

Pl,(K) - PlO(0) = 0. (3.9) 
We now solve the axisymmetric problem. If we substitute for Foo, Goo and 

Po, from (2.10) into (3.6) we can see that Flo, GI, and P, ,  will have both 
steady and unsteady components, the unsteady components being propor- 
tional to  cos 27 or sin 27. Suppose that we denote the steady parts of Flo, G,, 
and P,, by f,, g, and p ,  respectively, then we can use (2.10) and (3.6) t o  show that 

a(w,)/a?l+ r a f s l a c  = 0. (3.10 b )  

We shall obtain solutions of (3.10) in the Stokes and outer layers separately 
and t,hen match the solut,ions where the layers meet. We denote fs in the Stokes 
and outer layers by f t  and f: respectively. We can show from (2.21), ( 2 . 2 5 ) ,  
(2 .26 ) ,  (3.3),  (3.4) and (3.10) thatf: andf: satisfy the equations 

( 3 . 1 1 ~ )  

(3.11 b )  
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where W5, g) = P: + (4n2)-'{@&,~& +pk@&), (3.12) 

and it follow~s from (3.8) t>hat 
f; = g: = 0 a t  7' = 0 (3.13u, b )  

and f," and g: must be regular a t  7 = 0. The pressure p s  can be shown from (3.9) 
to satisfy the following condition: 

P s ( m - P s ( 0 )  = 0. (3.14) 

JI7e can write the solutions of (3.1 I )  in the form 

( 3.15 a )  
( 3.15 b)  fs" = $@{+a2}+c(Ln), 

where A,  B and C are for the moment unknown functions of 5 and G and we have 
rejected solutions of (3.1 I b )  which are singular at 7 = 0. IfJi andf: a,re to match 
a t  the edge of the Stokes layer we require that, 

A = C ,  B=O. 

A = Rr/8R5 + O ( d ) ,  
Then using ( 3 . 1 3 ~ )  we obtain 

and so we can write f j  and f," as follows: 
(3.16) 

f," = - (7"- (2c~)Q Ry') 

R' 
2n 

+ - {?7'[cos q' -sin$] e-7' - 6 sin 7 f e  -7' - cos q'e-71' - e-Q' + 2 + o(g-4)l J 7  

f: = $@,(112-R2)+R'ln3R5+O(n-H). (3.17 b )  

I n  order to find 0, and hencepi, we must calculate the radial velocity component. 
Suppose that we denote g, in the Stokes and outer layers by gs and g: respectively. 
I n  the Stokes layer (3.10b) becomes 

2 0 - 3 ~ 5  

(3.1 7 a )  

and in the outer layer we have 

(3.18 b )  

If we substitute for f: from ( 3 . 1 7 ~ )  into ( 3 . 1 8 ~ )  and integrate from 0 to a point 
7' in the Stokes layer we have 
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( 3 . 1 9 ~ )  

where u e  have used (3.13b) to show that [R - (2/u)*r’]g: is zero a t  9’ = 0. If 
we substitute for ft from (3.17b) into (3.18b) and integrate from 0 to a point 91 

still in the outer layer we obtain 

7s; = -&@’{r4- 2~2R2}+{&@R’R-  ( R ’ / ~ u 3 R ~ ) ’ + O ( ~ ~ ~ ) } y ~ ,  (3.19b) 

where we have used the fact that & is regular a t  9 = 0 to  show that r& is zero 
there. We now explain why we have evaluated only some of the terms of order 
cr-8 in (3.19a, b ) .  The terms of this order which are given explicitly are those 
which arise from the 0 r d e r - c ~ ~  terms in fj and f: through the equation of con- 
tinuity. However, terms of similar order will arise from the order-cr-% terms in 
f j  and f:, again through the equation of continuity, and these are the terms 
which are not given explicitly. The essential physical difference between the 
terms is that  the latter terms in g:, when combined with the order cr-8 terms in 
fj, give a resultant velocity parallel to the pipe wall, whilst the other terms lead 
to a component of velocity normal to the pipe wall. We shall in fact see that in 
the evaluation of the stream functions in the Stokes layer up to order u-4 the 
terms not shown explicitly are not required. If we use the condition that (3.19a, b)  
must match a t  the edge of the Stokes layer we obtain 

o=---- WR4 @R3Rf+( - R‘ )’ R2+--- R’2 v‘)’+O(cr-$), (3.20) 
16 4 20-3R5 u3R4 2eO-i s 

which we integrate once to  get 

(3.2 1) 

where Q is an unknown constant which we can determine by substituting for Q, 
from (3.12) into (3.21) and replacing& by its asymptotic form (3.3). If we then 
integrate from 5 = 0 to 5 = K and use (3.14) we find that 

P 4 ( K )  - P 4 ( 0 )  ‘=(  64 
(3.22) 

Thus if the ends of t,he pipe have the same mean radius the terms of order u-2 

in (3.22) vanish. It can in fact be shown that all higher-order terms also vanish 
in this case. When Q is not zero, if the dominant outer velocity, which is of course 
given by the terms proportional to Q ,  is expressed in inner variables it is then 
identical to  the inner-expansion terms proportional t o  Q, so that as far as the 
dominant term in the expansion of the velocity is concerned there is no need to  
distinguish between the two regions. If we consider @ and Q as given by (3.21) 
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and ( 3 . 2 2 )  we can use ( 3 . 1 7 )  and ( 3 . 1 9 )  to show thatJ;. and gs can be written in 
t’he form 

f ,  = Ao[(r2-  R’)/cT~R* + O ( d ) ] ,  ( 3 . 2 3 ~ )  

g, = A,[R’7(r2- R2) /g2R5+O(~-g ) ] ,  ( 3 . 2 3 b )  

where A, = (R-I(K) - R-4(0)} /16/0*  $. 
If we introduce a stream function $s defined by 

( 3 . 2 3 ~ )  

( 3 . 2 4 a ,  b )  

( 3 . 2 5 )  

and this represents a steady flow towards the wider end of the pipe. 

( 3 . 1 7 ~ )  and ( 3 . 1 9 a ) ,  may be written in the form 

f i  . = 2a3R5{~’[~~~~’-s~n?~’]e-~’-6sinq’e-~’-cosq’e-~~’-e~~’+2+O(a-?)}, R’ 

When Q is zero we can use ( 3 . 2 0 )  and ( 3 . 2 1 )  to show that f :  and g:, given by 

( 3 . 2 6 ~ )  

I e-2’l, 

2 + - + 4 7 ’ - #  +O(&). ( 3 . 2 6 b )  

We see from ( 3 . 2 6 )  that the order - r3  term in ( 3 . 2 6 b )  is just R’ times that in 
( 3 . 2 6 ~ ) .  Thus a t  any point in Stokes layer the dominant velocity is parallel to 
the pipe wall. We can also show that the order-a-.2 terms not shown explicitly 
in ( 3 . 2 6 )  similarly represent a velocity parallel to the pipe wall. We define a 
stream function $: in the Stokes layer by 

We can then use ( 3 . 2 6 )  to show that 

q?: = ( - R ‘ / 2 i u 8 R 4 )  (27’ sin f e-9' + 8 cos 7’e-f + 6 sin q’e-7’ + e-2? + 47’ 

- 9 + O(u-+)}, ( 3 . 2 8 )  

and the corresponding stream function in the outer layer is given by 

Thus $: has been evaluated explicitly only up to order u-3. However, we have 
shown the order-af term proportional to r4 - 2v2R2 explicitly since it is re- 
quired in order that  ( 3 . 2 8 )  and ( 3 . 2 9 )  match a t  the edge of the Stokes layer. 
The term of order a-8 proportional to  74-72R2 will clearly be of order r4 a t  
the edge of the Stokes layer and so is not required explicitly for matching up 
to  order ad. 
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The flux through the pipe associated with ( 3 . 2 8 )  and ( 3 . 2 9 )  is clearly zero to 
order g - 3  since I $ ~ I , , , = ~  is O ( r 4 ) .  We recall that Q = 0 corresponds to 
the ends of the pipe having the same mean radius. Alternatively if the ends of 
the pipe do not have t'he same mean radius Q can be made as small as we please 
by letting K tend to infinity in ( 3 . 2 2 ) .  The dominant steady streaming is then 
given by ( 3 . 2 8 )  and ( 3 . 2 9 ) .  The steady streaming in the high frequency limit when 
6 is not zero is evaluated in the appendix. 

4. Calculation of the steady streaming for small u 
When u is m a l l  the Stokes layer completely fills the pipe and there is no neecl 

to  split the flow field into separate regions. We again solve for the order-R, 
axisymmetric steady streaming velocity (gs, 0, f,). We first consider the form of 
the Stokes flow for small u. If we expand the Bessel functions appearing in 
( 2 . 2 3 )  and ( 2 . 2 1 )  using the series form for Bessel functions of sniall argument we 

obtain pio = (-i~/R~)(y~+Q~~icrR~+y~iu+0(~~)), 

where 

and for convenience we choose a = yo1. This is again equivalent to defining the 
typical axial velocit,y Uo in terms of the amplitude of the applied pressure 
difference. We can then write pAo in the form 

a i d  use ( 2 . 2 1 )  to show that 

foo N - i { ( y 2  - R2)/4R4} + O(U),  
goo - - i~{(~2-R2)/4R5)R'  + O ( V ) ,  
for N (iS/2R3) ( T / R ) ~ c o s  M 8  + O(U),  

M-1 S R  
Yo1 2R3 is R' (" ) Mfl cos M 8 + ( (%) -wl - b) } ( R3 - g] cos ill8 + 0 ( v) , 

h.,, :( (R)  - (s) ] ( E - ~ ) s i n ~ ~ ~ + ~ ( u ) .  
'I N + 1  ni-1 s' 

Using the notation of $ 3  we can see that q,, f, and ps  are det,ermined by ( 3 . 1 0 )  
together with the boundary conditions 

f, = 9, = 0 at 7 = R, ( U a ,  b )  
P*(K) -PA()) = 0. (4.2c) 

We also require that y,, f, and p ,  be regular at  y = 0. If we now let u tend to  zero 
in ( 3 . 1 0 )  and use (2.21a), ( 2 . 2 5 a ) ,  (4.1) and the series expansion of Bessel func- 
tions we can show that 
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and the solution of (4.3a) which is regular a t  71 = 0 and satisfies ( 4 . 2 ~ )  is 

(276 - 9y4R2 + 1872R4 - 11 R6} + 0(o). ( 4 . 4 ~ )  

We can now substitute for f, into (4.3b) a.nd integrate from 0 to  y to obtain 

119, = 

R'2 
384R8 

+ - { - y6 + 6y4R2- llq2R4) + 0(c), (4.4 b) 

where we have used the fact that  g, is regular a t  7 = 0 to show that yg, is zero 
there. If  we put y = R in (4.4b) and use (4.2b) we obtain the Reynolds equation 
for the pressure, which we integrate once to get 

16C/R4 = p;-R'/32R5+O(g). (4.4c) 

C is a constant which, after integrating both sides of the above equation from < = 0 to = K and using (4.2c), is found to be given by 

(4.6) 

and C is therefore of order CT if the ends of the pipe are of the same mean radius. 
It can easily be shown that all higher-order terms in (4.5) also vanish in this 
case. If we introduce the stream function $, defined by (3.24) we can show that 

= c [ ~ 4 ; ; 2 " 2 ] - ~ R ( ( ~ ) " 6  ( q + 9  (#"4 (;)"+O(o).  (4.6) 

Thus we see that if R ( K )  = R(0)  there is no net flux through the pipe. We recall 
that  t,his was also the case in $ 3  when R ( K )  = R(0).  The steady streaming in 
t,he low frequency limit when E is not equal to zero is discussed in the appendix. 

5. Discussion of results 
We have seen that in both the low and the high frequency limits the geometry 

of the pipe is crucial in determining the nature of the induced steady streaming. 
I n  particular the difference between the mean radii of its ends plays an important 
role. If this difference is zero then the steady streaming consists of regions of 
recirculation confined between the nodes of the pipe (i.e. where R' is zero). If 
the ends of the pipe do not have the same mean radius then there is a component 
of velocity which represents a steady flow towards the wider end of the pipe. 
I n  the high frequency limit the latter component of velocity in fact dominates 
the steady streaming whereas in the low frequency limit the two types of steady 
streaming appear a t  the same order of magnitude in CT. I n  order to  see why this 
is so me return to  (3.1 1 a). 

We notice that the right-hand side of this equation contains two types of 
terms produced by the Reynolds stresses associated with the basic oscillatory 
flow. Clearly the term incorporated in @, namely ( 2 ~ y { f j & p &  +p& $&), is 
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uniform across the pipe whereas the term proportional to  e-4' is exponentially 
small away from the Sbokes layer. We can show by replacing t,he former term 
by its asymptotic form for large u that b0t.h terms are of order 0.4. However 
the former term is clearly of order u-2 when t.he corresponding equation in the 
outer region is considered, the extra u-l factor in (3.1 1 a) appearing when the 
differential operator a2/ay2+y-la/8y is written in terms of 7'. The pressure 
gradient pi  clearly depends on both terms. If we subst,itute for @ from (3.13) 
into (3.21) we can show that 

Hence the Reynolds-stress term independent of 71' in (3.1 1 a)  is balanced by an 
identical term in the pressure gradient. The other term on the right-hand side 
of (5.1) is of order r3 and arises from the terms proportional to e-1' in (3.11 a). 
Since the first term on the right-hand side of (5.1) is of order r2 we see that the 
two types of Reynolds-stress term in (3.1 1 a) affect pi att different orders in cr. 

The constant Q is determined by there being no net pressure difference between 
the ends of the pipe arising from the terms on the right-hand side of (5.1). If the 
ends of the pipe have the same mean radius then Q is identically zero. Otherwise 
we recall that  Q is of order r2 and the velocity field is dominated by t,he terms 
proportional to  Q. The steady streaming is then given by 

and we can easily show that t,he stream surfaces associated wit,h (5.2) are given 
by 

7 = AR, 0 6  A <  I .  (5.3) 

A related effect has been reported by Onluata gt Mei (1970), who considered 
mass transport in water waves. In  the case of a wave tank closed at the far end, 
along which there is no net flux, they found that there was an induced steady 
pressure gradient. Similarly there is an induced steady pressure gradient asso- 
ciated with (3.28) and (3.29) in the high frequency limit and with (4.6) with C' 
equal to  zero in the low frequency limit. However, in our problem this steady 
pressure gradient is balanced by an equal and opposite one associated with the 
velocity component proportional to that given by (5.1). 

I n  figure 1 we show the steady streaming in a wavy axisymmetric pipe whose 
ends have the same mean radius. In figure 2 we show the steady streaming in 
the Stokes layer a t  the pipe wall in more detail. The steady streaming shown in 
figure 2 is qualitatively similar to  tha.t found by Lyne (1971 b ) ,  who considered 
oscillatory viscous flow adjacent to  a wavy wall. Our results correspond to  t.he 
wavelength of the wall being much greater than both the thickness of t,he 
Stokes layer at the wall and the amplitude of oscillation of a fluid particle far 
from the wall. Moreover, Hall (1973) has considered oscillatory viscous flow in 
a two-dimensional channel of slowly varying depth. If one of the walls of the 
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FIGURE 1. Steady streaming in a pipe defined by 7 = 1 - S sin L', 
0 < 5 < 271, with u*S < 1 and u $ 1. 

FIGURE 2. Steady streaming in the Stokes layer in a pipe defined by 
7 = 1-Ssin <, 0 < 5 < 271, with uiS < 1 and u 1. 

channel is taken to be wavy then the steady streaming in the Stokes layer a t  
the wall is found to  be identical to that found by Lyne. 

In  figure 3 we have sketched the steady streaming given by (4.6) for a pipe 
defined by r = I - + e ~ p - ( c - 4 ) ~ ,  O < [ < S .  

The ends of this pipe have the same radius and so C in (4.6) is zero. I n  contrast 
to the high frequency limit we see that there is no region of recirculation near 
the pipe wall. The flow is such a pipe might be of some interest as a model for 
oscillatory flow in a narrow constricted blood vessel. However, in such a flow 
the condition that the pipe radius changes slowly would be violated and so 6, 
defined by (1.2), would not be small. 
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q =  1-4 exp 

I 
\ I 

l l=O I I I , I Q&y / 
5=0 5=4 c=s 

FIGURE 3. Steady stretinling in a pipe defined by 
7 = 1 - 4 exp [ - (5-4)?], 0 Q 5 Q 8, with B < 1.  

Finally, we compare the order of magnitude of the high frequency steady 
streaming given by (3.25) with that found by Lyne (1971a) for oscillatory flow 
in a curved pipe. A calculation shows that in the Stokes layers of these flows 
the ratio of typical axial steady velocities for flows with basic velocities of similar 
order and pipes of similar radius is LIR,, where R, is the radius of curvature of 
the curved pipe. Thus we might expect that  for flow in a curved pipe of varying 
radius the effects of curvature and narrowing are equally important as far as 
the Stokes-layer type of steady streaming is concerned. The steady streaming 
of the form given by ( 5 . 2 )  would clearly be more important than both the latter 
contributions since, as shown by (3.23) and (3.26), this effect appears at, lower 
order in u. It should also be pointed out that  the steady streaming evaluated by 
Lyne had no component along the pipe. 

Let us consider a pipe whose cross-section varies monotonicallj-. The steady 
streaming in the high frequency limit will then be dominated by that given by 
( 5 . 2 )  and will represent a steady flow towards the wider end of the pipe. The 
streamlines for such a flow will then be as given by (5.3). Lyne ( 1 9 7 1 ~ )  discussed 
the relevance of his work to the flow in curved part of the human aorta. The 
parameters 6 and crfor such a flow are typically of order 0.001 and 10.0 respect- 
ively whilst R, is of order 100.0. Thus our theory is not strictly applicable but 
i t  is likely that the effect of narrowing of the aorta is a t  least as important as the 
effect of curvature as far as the steady streaming is concerned. 

I n  the appendix we see that the work of $§ 3 and 4 can be extended to evaluate 
the steady streaming in a pipe which is slightly non-axisymmetric. The results 
of the high frequency order-ER, ca.lculation show that if R ( K )  = R(0) then the 
steady streaming is confined to  the Stokes layer and has no azimuthal component. 
If R(K) + R(0) the steady streaming persists throughout the pipe and is found 
to  have no azimuthal component of velocity if 

S = yR, 
where y is a constant. This corresponds to a pipe of uniform cross-sectional 
shape. Full details of the non-axisymmetric steady streaming can be found in 
the author’s thesis (Hall 1973). 

The author acknowledges the receipt of a Science Research Council main- 
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Appendix 
We now determine the order-e corrections to the axisymmetric steady stream- 

ing which we evaluated in §§ 3 and 4. Suppose that we denote the steady parts 
of GI,, H,,, F,, and P,, by G,, H,, F, and P, respectively, then we can use (2.5), 
(2.9), (2.10) and (2.19) to show that 

aq./aV = a q a e  = 0, (Ala ,  b) 

f,+eF, = g,+EG, = EH, = O(e2) a t  7 = RfeScos M 8 ,  (A3a, b, c) 

where f, and g, are now assumed known. From (2.7) and (2.9) we can show that 

P,(K)-P,(O) = 0, (-44) 

and if we eliminate p+ from (2.5a, b ) ,  substitute for 9, h, and f from (2.9) into 
the resulting equation and equate terms of order E R , ~  we obtain 

Together with the conditions that F, and P, are independent of 8 a t  T = 0 and 
G, and H, vary like cos 8 and sin 8 there (A2)-(A5) completely specify the prob- 
lem for G,, H,, F, and P,. The solution of this system is long and tedious and we 
briefly summarize the method here. The full details are given by Hall (1973). 

The complexity of the right-hand sides of (A2a) and (A5) leads us to consider 
the Stokes and outer layers separately again in the high frequency limit. We use 
(G:, H i ,  F t )  and (G,", H,", F,") to represent (G,, H,, 4) in the Stokes and outer layers 
respectively. Equations (A2a) and (A5) are written in appropriate forms for 
these layers and solved such that their solutions in different layers match where 
the layers meet. If the values of Ft and Fg are then substituted into the equation 
of continuity in these layers we obtain equations for G;, Ht ,  G," and H,". These 
can be solved using the solution of (AS) in each layer to give Gt, Ht ,  G,O and H i .  
If we then apply the conditions that (Gt, H i )  and (G,", H,") match a t  the edge of 
the Stokes layer together with (A3) and (A4), all the unknown functions of 6 
appearing in Pi, F,", Gt, etc., can be determined. It is again found that the solution 
is greatly influenced by whether or not &, defined by (3.21), is zero. 

1 5  F L M  64 
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If Q is not zero i t  is not necessary to  distinguish between the two layers and 
we can write 

F, = ( -  2 A o S / ~ 2 R 3 ) / ( ~ / R ) M ~ ~ ~  M O + O ( d ) ,  (AGc) 

where A, is given by ( 3 . 2 3 ~ ) .  However, when Q is zero we must distinguish 
between the layers and we have 

G; = (SR’2/2bgR5){e-27’+ 3sinfe-7‘- 2~0sr,1’e-7’-q’cos7’e-~’}cos MO 

F; = (SR’/2*dR5) {e-2f + 3 sin fe-f  - 2 cos f e-7' - 7’ cos T’e-v’} cos MO 

and so in this case the dominant steady streaming of order sR, is confined to 
t,he Stokes layer and has no swirling component. Similarly if we choose S = yR, 
where y is a constant, the dominant steady streaming of order BRM, given by 
(3.35), will have no such component. This particular simplification corresponds 
to  flow in a pipe of constant cross-sectional shape. 

In  the low frequency limit a similar approach can be used but there is no 
need to  split the flow into separate regions. The results of performing such a 
calculation are particularly complicated even in the special case S = yR and 
are not particularly interesting. Details of t,his solution are given in the author’s 
thesis (Hall 1973). 
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